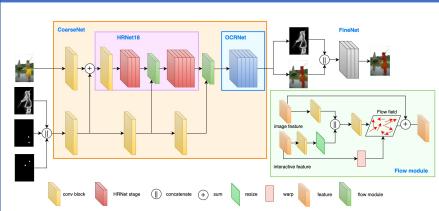


EdgeFlow: Achieving Practical Interactive Segmentation with Edge-Guided Flow


Yuying Hao¹, Yi Liu¹, Zewu Wu¹, Lin Han²*, Yizhou Chen³*, Guowei Chen¹, Lutao Chu¹, Shiyu Tang¹, Zhiliang Yu¹, Zeyu Chen¹, Baohua Lai¹ ¹Baidu, Inc. ²NYU ³CQJTU

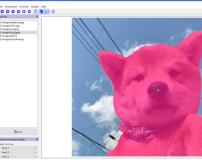
Interactive Image Segmentation

Examples of interactive clicks

- Green dots denote positibe clicks
- Red dots denote negative clicks

Coarse-to-fine network

- CoarseNet utilizes HRNet-18+OCR
- FineNet utilizes three atrous convolution blocks


Edge-guided Flow

- Prevents feature dilution over the network
- Respond to the clicks efficiently

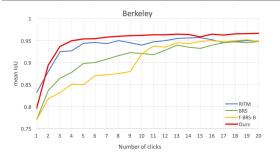
Object edges as prior information

• Improves the stability of segmentation results

Interactive Segmentation Tools

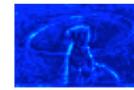
He Amotation Function Display Help

Annotation pipeline


- Data preparation
- Interactive annotation
- Polygon frame editing

Advantages

- Precise segmentation result
 - Adjust the polygon vertexes
- Filter the largest connected region
- Multiple saved formats


Experiments

Method	GrabCut		Berkeley	DAVIS		Pascal VOC
	NoC@85	NoC@90	NoC@90	NoC@85	NoC@90	NoC@85
GC [10]	7.98	10.00	14.22	15.13	17.41	-
GM [18]	13.32	14.57	15.96	18.59	19.50	-
RW [17]	11.36	13.77	14.02	16.71	18.31	-
ESC [19]	7.24	9.20	12.11	15.41	17.70	-
GSC [19]	7.10	9.12	12.57	15.35	17.52	-
DOS [49]	-	6.04	8.65	-	-	6.88
LD [26]	3.20	4.79	-	5.05	9.57	-
RIS-Net [27]	-	5.00	6.03	-	-	5.12
ITIS [35]	-	5.60	-	-	-	3.80
CAG [36]	-	3.58	5.60	-	-	3.62
BRS [21]	2.60	3.60	5.08	5.58	8.24	-
FCA [29]	-	2.08	3.92	-	7.57	2.69
IA+SA [24]	-	3.07	4.94	5.16	-	3.18
f-BRS-B [46]	2.50	2.98	4.34	5.39	7.81	-
RITM-H18 [47]	1.54	1.70	2.48	4.79	6.00	2.59
Our method	1.60	1.72	2.40	4.54	5.77	2.50

Effect of Early-Late Fusion

image and clicks

model w/o early-late fusion

model + early-late fusion

Conclusion

Interactive segmentation becomes an efficient way to extract the object of interest. In this work, we propose a novel interactive architecture named EdgeFlow that fully utilizes the user interaction information without any post-processing or iterative optimization scheme. With the coarse-to-fine network design, our proposed method achieves state-of-the-art performance on common benchmarks. Furthermore, we develop an efficient interactive segmentation tool that helps the user to improve the segmentation result progressively with flexible options.

• Improve

EdgeFlow Architecture