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Weakly-supervised methods

» We study the problem setting in which labels are supplied at the GAIN [1] VGG16  10.5K imgs (classes) 55 3
level of sparse pixels and show that with only a small collection of B - Building MDC [2] VGG16  10.5K imgs (classes) 60.4
such labels, modern deep neural networks can achieve good C - Car DSRG [3] ResNet101 10.5K imgs (classes) 61.4
performance. F - Fence FickleNet [4] ResNet101 10.5K @mgs (classes) 64.9

» We show how this phenomenon can be exploited with an efficient P - Pole ggﬁggf;g 6 Y/gg]g 1822 :ﬂgi Eggﬁgaes) gg'?
and practical “mouse-free” annotation strategy as part of a R - Road — ractivepweak supervision ' & '
proposed PIXELPICK active learning framework. ,f, : ,f,;il; symbol PiIXELPICK (Ours)ResNet50 1.5K imgs (sparse pixels) 65.6

» We perform a series of experiments into factors that affect model
performance in the low-annotation regime: annotation diversity,
architectural choices and the design of the sampling mechanisms
for selecting most useful pixels.

» We compare with other state of the art active learning approaches
on standard segmentation benchmarks: CAMVID, CITYSCAPES

I - blcyclist
V - paVement
D - peDestrian

Comparison to existing weakly-supervised methods on VOC12 vali-
dation set. PIXELPICK is competitive against existing methods, using

K - sKy a budget of 20 pixel annotations per image when trained on a much
smaller number of images.
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and PASCAL VOC 2012, where we demonstrate comparable Conclusion

segmentation performance with significantly lower annotation The annotator classifies the highlighted point (in red) by pressing the | |

budget. keyboard character of the corresponding class for the dataset. The tool > We proposed PIXELPICK, a framework for semantic segmentation

» We assess PIXELPICK from the perspective of practical then highlights the next pixel proposal and the process repeats. Note that employs a small number of sparsely annotated pixels to train
deployment, assessing its annotation efficiency and robustness. that the task requires the annnotator to perform classification, but not effective segmentation models.
localisation. » We showed that PIXELPICK requires considerably fewer
annotations than existing state-of-the-art to achieve comparable
performance.

Inference across all pixels Query sampling

Unlabelled pixel database : : — » We showed how annotation for pixel-level active learning can be
—fail : obtained efficiently with a mouse-free labelling tool, facilitating
real-world deployment.
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randomly sample B pixels and send them to be annotated. PIXELPICK performs favourably against existing state-of-the-art

approaches for active learning and semi-supervised learning on the
CamVid (left) and Cityscapes (right) benchmarks.
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