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RESULTS

CONCLUSION

In this work, implemented a new loss function that
leverages label uncertainty to perform online
bootstrapping on the bounding-box labels during
training, eliminating the need to have generic mask
generators. Due to the improving labels during
training, the model’s segmentation performance
increases overtime.

While achieving outstanding results, the downside of
deep neural networks is that they are very data
hungry. Especially segmentation models need highly
curated datasets, which are very costly. A much
cheaper way to label data are bounding boxes, since
these only require 2 clicks per object. However,
training a segmentation model on bounding box labels
yields unexpected results (Figure 1).

Training segmentation models with bounding box
labels is an active research fields. Most of the current
works rely on box-to-mask proposal generators.
However, these are generally not tuned to the
dataset at hand. Other works try to first learn a
better box-to-mask proposal generator on similar
datasets, but for specific use-cases, these are mostly
not available.

A standard loss function cannot cope with

bounding box labels right out of the box.

Therefore, we introduced two new concepts to

the a standard BCE loss for segmentation:

• Learning aleatory uncertainty (label 

uncertainty)

• Performing online bootstrapping

ALEATORY UNCERTAINTY 
We incorporate aleatory uncertainty into the
network by outputting a logit distribution
𝑙 ~ 𝑁 𝜇, 𝜎2 . By introducing aleatory uncertainty to
the BCE loss, the network can learn to increase its
uncertainty for pixels which target is highly unlikely
e.g. background in bounding box labels. This extra
parameter σ allows the loss to decrease, while the
network outputs a label opposite to the target.

ONLINE BOOTSTRAPPING
While the aleatory uncertainty enables the model to
contradict the target by increasing it’s uncertainty,
the gradients are still pointing towards the
(erroneous) target. With bootstrapping, we can alter
the targets and change the gradients towards the
network’s belief.

The bootstrapping loss is a weighed sum of the
original and “flipped” target. The weight is based on
the uncertainty learned from the uncertainty loss.
For high uncertainties, the target (and loss) gets
flipped, changing the gradients towards the
network’s output.

COMBINED LOSS FUNCTION
The combined loss function now has two local
minima, enabling the network to lower the loss while
contradicting the label. This can only be done by
increasing it’s uncertainty.

LEARNING THE UNCERTAINTY
The aleatory uncertainty learns the label
uncertainty. However, if the model only sees
bounding box labels, there is no uncertainty to
learn. Only a small portion of pixel-perfect labels is
needed to learn the correct uncertainty for
erroneous pixels within the bounding box.

BINARY SEGMENTATION
We tested our method on the CityScapes dataset (car
class), and compared the results to a model (U-Net) trained
with a standard BCE loss. Table 1 shows the results. It is
clear that our loss function enables the model to achieve
near optimal IoU (trained with 100% pixel-perfect labels),
when trained on a dataset consisting of a majority of
bounding-box labels and only a small portion of pixel-
perfect labels.

MULTI-CLASS SEGMENTATION
We extended our binary loss to a multi-class setup by extending the single logit distribution
characterised by µ and 𝜎2 to a distribution of the logit vector l characterised by a mean vector 𝝁
and covariance matrix Σ. The loss with aleatory uncertainty now is the cross-entropy loss of the
expected probability.

The bootstrapping loss consists now of a single term instead of a weighed sum: the target for the 
bootstrapping loss is changed when a certain class's variance exceeds a predetermined value.

We tested the multi-class loss on the CityScapes cars and person instances. Again, we compared 
our results to a fully pixel-perfect dataset (Table 2).

In this work, we proposed a new loss function for training a segmentation model with bounding box

labels without the need of box-to-mask proposal generators. Our method requires only a small subset

of pixel-perfect labels, which drastically reduces the annotation cost. However, due to the sampling

nature of the MCI in our loss function, extending our method to more than 3 classes is still work in

progress.

Figure 1. Output of a model trained with bounding-box labels.

Figure 2. Model trained with our loss function. The model 
indicates it’s label uncertainty which is used to bootstrap the label.

Figure 3. From left to right: input image, bounding-box target, label uncertainty and segmentation output. 

Table 1. Binary segmentation results.

Table 2. Multi-class segmentation results.

Figure 3. From left to right: input image, bounding-box target, car label uncertainty, person label uncertainty and segmentation output.


