

Self-improving classification performance through GAN distillation

M. Pennisi, S. Palazzo, C. Spampinato

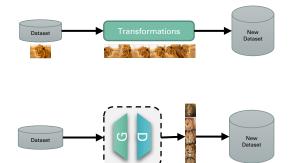
Method

PeRCeiVe Lab, DIEEI, University of Catania, Italy

ILDAV ICCV 2021 Workshop

Motivation

- The availability of a **large dataset** can be a key factor in achieving good generalization capabilities when training deep learning models.
- Unfortunately, **dataset collection is an expensive and time-consuming task**, especially in specific application domains (e.g., medicine).

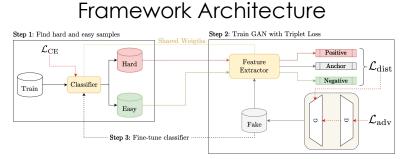


Existing augmentation approaches act just on the dataset before training.

GAN

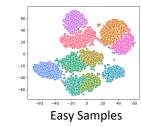
Our idea

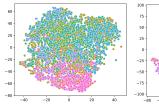
- As the final goal is to train a classifier it makes sense to include it in the augmentation process.
- We propose to leverage the training status of the classifier in order to **distill data that is more informative for the model.**



- $\mathcal{L}_{\text{dist}} = \mathbb{E}_{z, x_h, x_e} \left[\max(\left\| \mathbf{F} \left(\mathbf{G}(z) \right) \mathbf{F} \left(x_p \right) \right\|_2 \left\| \mathbf{F} \left(\mathbf{G}(z) \right) \mathbf{F} \left(x_e \right) \right\|_2 + m, 0) \right]$
- 1. Pre-train the classifier on the dataset, and label training data between **easy and hard samples**.
- 2. Pre-train the GAN using a **triplet loss** that encourages the model to generate realistic samples that match the feature distribution of hard samples.
- 3. Train both models simultaneously, fine-tuning the GAN to approximate the changing hard sample feature distribution while **training the classifier with a mixture of real and synthetic data**.

Feature Space of Classifier (t-SNE)





Hard Samples Synthetic Samples

Results

Results with different Classifiers:

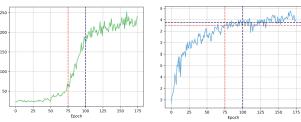
	AlexNet	ResNet-50	DenseNet-121
Baseline	69.63	71.85	79.41
GAN distil.	74.56	77.48	81.50
Gain	+ 4.93	+5.63	+2.09

GAN Distillation vs GAN augmentation:

	Accuracy	Accuracy Gain
Baseline	69.63	-
GAN augmentation	72.17	+2.54
GAN distillation	74.56	+4.93

Mode Collapse

 After the collapse of the Generator the Classifier continues to improve



• Collapsed images features lie on the borders of class clusters, effectively representing hard features.

