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Motivation

The availability of a large dataset can
be a key factor in achieving good
generalization capabilities when training
deep learning models.

Unfortunately, dataset collection is an
expensive and time-consuming task,
especially in  specific  application

domains (e.g., medicine).
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Existing augmentation approaches act just
on the dataset before training.

Our idea

As the final goal is to train a classifier it
makes sense to include it in the
augmentation process.

We propose to leverage the training
status of the classifier in order to distill
data that is more informative for the
model.
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Framework Architecture

Step 1: Find hard and easy samples

Self-improving classification performance through
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Results with different Classifiers:
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1. Pre-train the classifier on the dataset, and label

fraining data between easy and hard samples.

2. Pre-train the GAN using a triplet loss that encourages
the model to generate realistic samples that match
the feature distribution of hard samples.

3. Train both models simultaneously, fine-tuning the
GAN to approximate the changing hard sample
feature distribution while training the classifier with a
mixture of real and synthetic data.

Feature Space of Classifier (t-SNE)
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Step 2: Train GAN with Triplet Loss AlexNet ResNet-50 DenseNet-121
[T Pese ] Baseline 69.63 71.85 79.41
s e — } Ly ~ GANdistil  74.56 77.48 81.50
I I i Gain +4.93 +5.63 +2.09

GAN Distillation vs GAN augmentation:

Accuracy  Accuracy Gain
Baseline 69.63 -
GAN augmentation 72.17 +2.54
GAN distillation 74.56 +4.93

Mode Collapse

+ After the collapse of the Generator the
Classifier contfinues to improve
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+ Collapsed images feafures lie on the
effectively

borders of class clusters,




