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Introduction Y, is the ground truth, ¥, is the prediction, B € [—1,1] is the *We also present some visual results of the wheat spikelet
only tuning parameter of AMSE, and localization task In Fig 4.

* Annotating images with many objects (e.g. >100) is
tedious and humans can make mistakes (e.g. missing
annotations).
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* \We present an approach which uses incomplete
annotations (e.g. Fig 1. (c) and (d)) In every training image
with an Asymmetric Mean Squared Error (AMSE) loss
functlon to tackle the mentioned problems.

B > 0 Is adopted because we expect the model to be ..nu

punished more In the false-negative areas (i.e. objects exist Predicted Heatmap (MSE) Predicted Heatmap (MSE)

In these areas but they are not annotated). --“m -H.-
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Experiments and Results
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Fig 1. Examples of incomplete annotations (a) ShA-CAN (MAE v.s. drop rate) (b) ShB-CAN (MAE v.s. drop rate) ....|
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i 4 /// , i 4 AN \\ Fig 3. (a — c) Test results on ShA/ShB-CAN (crowd counting) and spikelet-SHN (spikelet
/ NN localisation) respectively; (d) optimal B for various drop rates on different models/dataset : STT :
) A RN ) respectively: () optimal 5 P « AMSE (with tuned B) significantly improves the
N i, SR N Nl - - * We ran experiments on a crowd counting task (ShA/ShB- performance of counting/localizing models trained with
-15 -1.0 05 00 05 1.0 15 -15 -1.0 -05 0.0 05 1.0 1.5 CAN, Fig 1 first row) and a wheat spikelet localization incomplete annotations per image, even on extreme drop
Y, — Y, 7. : :
T el task (spikelet-SHN, Fig 2 second row) rate (e.g. 0.7 and 0.9).

Fig 2. Curves of AMSE (on different ) and MSE : : :
| ( 2 * For lower drop rates (1.e. <0.5) using AMSE achieves

* We randomly drop annotations from every image; the _
comparable performance as trained on fully-annotated

. 5 5 \12 dropped portion is determined by drop rate (dr), where
AMSE = —Z B +sign(Y, = V)] = (Y, - 7))} (1) I zp[() f] Y drop rate (cr) dataset.
* The optimal B is positively related to the drop rate,
MSE = —Z L-7) @ * We compare the performance between MSE and AMSE though the exact value varies depending on dataset and

under different dr; the results are shown In Fig 3. models.




