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Motivation
• 3D reconstruction has various applications ranging 

from autonomous driving to augmented reality. 
We investigate Multi-View Stereo (MVS), a subtask 
of 3D reconstruction.

• It is unknown how well pre-trained MVS 
algorithms are able to generalize to scenarios not 
resembling the training dataset.

• Our goal is to generate customizable synthetic 
training data which will allow us to evaluate 
various existing MVS networks [3, 5, 6, 8] as well 
as the properties of the data itself.

Testing Process

Future Work
• Add more parameters to tool to give more control over 

generated data
• Train machine learning networks on our data to determine 

how well our data transfers to real-world applications
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Our Contribution
• Created a tool in Unity 3D Game Engine to 

generate 2D datasets from existing 3D datasets 
given adjustable parameters.

• We test network error across three datasets 
(Matterport3D [2], ArchViz [1], SUNCG [7]), four 
parameters (Camera Height, Camera Pitch, Camera 
Yaw, Sample Distance), and five MVS networks.

Input: 3D Dataset + Parameters

Output: RGB Images, Extrinsic Matrices, Depth Maps

We compare MVS predicted depth map with ground truth (generated) depth map using abs rel error, and use these results to 
inform selection of future parameter settings. MVS networks used: Pairnet [5], Fusionnet [5], PMVS [3], GPMVS [6], FMVS [8]. 

Extrinsic Matrices contain the 
camera position and rotation of 
the camera for every picture taken

RGB Images + 
Extrinsic Matrices

   MVS

Predicted Depth 
Maps

3D Scene reconstructed 
from ground truth depth 

maps

3D Scene reconstructed 
from MVS predicted 

depth maps

Results Discussion 

Average Camera Height Error 
Across All Datasets

Average Camera Height Error 
Across All Networks

Average Camera Pitch Error 
Across All Networks

Average Camera Pitch Error 
Across All Datasets

• The different parameter settings offer insights on 
how network architecture affects performance. 
Differences in performance between GPMVS [6], 
Pairnet [5], and Fusionnet [5] are likely caused by the 
absence of deep features in the cost volume 
construction of GPMVS.

• Matterport3D [2] and ArchViz’s [1] similar textures 
likely cause network predictions on image sequences 
derived from these datasets to be more similar to 
each other than to predictions on sequences from 
SUNCG [7]. 

•  Variations of camera height and pitch produce the 
two largest average maximum abs-rel errors. We 
hypothesize that all of the networks used are most 
sensitive to varying vertical camera views.

• We found the best choices of the values for each 
camera parameter vary for each network. The 
networks trained on ScanNet [4] have the least error, 
likely due to the similarity between our training data 
and ScanNet.
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